地点:行健楼学术活动室526
邀请人:王锋
摘要:One step block implicit methods (BIM) have desirable stability properties and provide higher-order of accuracy. In this talk, we first introduce several traditional time-stepping algorithms. Then we present a family of block implicit methods (BIM) which can be described by a BIM tableau including two matrices and two vectors. We prove that the traditional overlapping Schwarz theory for parabolic problems discretized by the backward Euler or Crank-Nicolson schemes can also be extended for BIM. Finally, some numerical results obtained on a parallel computer with thousands of processors are reported to demonstrate the effectiveness of BIM.
报告人简介:李世顺,博士,信阳师范大学特聘教授,硕士生导师。2011年6月博士毕业于浙江大学数学系。2013年11月-2014年11月美国科罗拉多大学计算机系博士后,2018年1月-2018年12月中国科学院深圳先进技术研究院访问学者。2020年7月-2020年12月澳门大学访问学者。研究方向为区域分解方法和并行算法。目前主要研究时空并行区域分解算法的理论与应用。