报告地点:行健楼学术活动室526
Abstract: In recent years, more and more attention has been paid to the low regularity numerical study based on the practical needs. In this talk, some Fourier integrators are proposed for solving the KdV equation and the nonlinear Schrodinger equation. The designation of the scheme is based on the exponential-type integration, Splitting methods and the Phase-Space analysis of the nonlinear dynamics. By the rigorous analysis, the new schemes provide the first-order or second-order accuracy in Sobolev spaces for rough data, and reduce the regularity requirement of existing methods so far for optimal convergence. Moreover, the conservation laws of the numerical solutions are considered.