报告地址:行健楼学术活动室665
邀请人:陈慧斌 副教授
报告摘要: Llarull's theorem characterizes the round n-sphere among all spin manifolds whose scalar curvature is bounded from below by n(n-1). We show that if the scalar curvature lower bound, n(n-1), is almost satisfied, then the metric is C^0-close to the round metric outside a small bad set. This completely solves Gromov's spherical stability problem and is the first instance of a scalar curvature stability result that both holds in all dimensions and is stated without any additional geometrical or topological assumptions. It is a joint work with Sven Hirsch.
个人简介: 张一岳,现为北京雁栖湖应用数学研究院助理研究员。2021年获杜克大学博士学位,博士导师是Hubert Bray。2021年到2024年在加州大学欧文分校做博士后,博士后导师是Richard Schoen。 其研究方向是几何分析和广义相对论,目前主要研究对象是数量曲率和正质量定理。相关结果在国际期刊Math. Ann., IMRN, J. Geom. Anal.等杂志上。