报告地点:学正楼202
邀请人:姜波教授
Abstract:
In this talk, a new gradient method for unconstrained optimization problem is proposed, where the stepsizes are updated in a cyclic way, and the Cauchy step is approximated by the quadratic interpolation. Combined with the adaptive non-monotone line search technique, we prove the global convergence of this method. Moreover, the algorithms have sublinear convergence rate for general convex functions and R-linear convergence rate for problems with quadratic functional growth property. Numerical results show good performances of the proposed gradient methods compared to the benchmark methods.
Bio: 孙聪,北京邮电大学理学院副教授、博士生导师。2008年本科毕业于北京邮电大学理学院,2013年博士毕业于中国科学院数学与系统科学研究院。她的主要研究领域是非线性优化方法,特别是优化在信号处理中的应用。她曾获第三届中国科协青年托举人才工程的资助,入选北京邮电大学1551人才计划。孙聪博士发表论文三十余篇,其中包括IEEE Transactions on Signal Processing等信号处理领域顶级期刊和会议。她目前是中国运筹学会理事、副秘书长,中国运筹学会数学与智能分会理事,北京市运筹学会理事。