报告地点:行健楼学术活动室526
邀请人:张海诚副教授
摘要:We show that, for any dg algebra A, its perfect derived category can be realized respectively as an (enlarged) cluster category and a (shrunk) singularity category of certain differential bigraded algebras, generalizing results of Ikeda-Qiu and Happel/Hanihara-Iyama respectively. A direct equivalence between such a cluster category and singularity category is also given via relative Koszul duality. Finally, we show that these construction is compactible with taking orbit categories. This is a joint work with Fan Li and Bernhard Keller.
报告人简介: 邱宇,清华大学丘成桐数学科学中心教授。研究方向为代数表示论与几何拓扑,在Calabi-Yau/Fukaya范畴,稳定条件空间,辫子群和丛理论等方面取得了重要成果,主持国家级人才项目。在Invent. Math., Math. Ann., Proc. Lond. Math. Soc., Adv. Math., Compo. Math., J. Reine Angew. Math., J. Topol., Trans. Amer. Math. Soc.等杂志上发表学术论文二十余篇,曾获国际代数表示论会议奖,北京青年科技奖(//haokan.baidu.com/v?pd=wisenatural&vid=4459078572665012145)。