网赌

网赌 > 学术报告 > 正文
Observability inequality, log- type Hausdorff content and heat equations
报告人:汪更生教授,天津大学 时间:2025年3月11日上午10:00 字号:

报告地点:行健楼学术活动室526

邀请人:吴奕飞教授

报告人:汪更生,天津大学应用数学教授,主要研究分布参数系统控制理论尤其是偏微分方程的能控能观性、能稳性和时间最优控制等,特别的,在热方程与薛定谔方程的能观性不等式方面作出重要贡献。现任控制领域顶刊SIAM J. Control and Optimization和数学控制论顶刊ESAIM: Control Optim. Calc. Var.等的编委。

报告摘要:This paper studies the observability inequality for heat equations defined on   a bounded domain of $\R^d$ and the whole space $\R^d$ respectively, where the observation sets are measured by a  Hausdorff content, defined by a log-type gauge function,  which is closely related to the heat kernel. For the heat equation on a bounded domain, we obtain the observability inequality for observation sets of positive log-type Hausdorff content, which, in particular, implies the observability inequality for  observation sets of  positive s-dim  Hausdorff measure, where s can be any number in $(d-1,d]$. For the heat equation over $\R^d$, we build up the observability inequality  for observation sets which are thick  at scale  of  the log-type Hausdorff content. This is a recent work joint with H. Shanlin and M. Wang.

【打印此页】 【关闭窗口】