网赌

网赌 > 学术报告 > 正文
图论组合系列报告:Kruskal--Katona-type theorems for Graphs: q-Kneser graphs
报告人:王军教授, 上海师范大学 时间:2021年1月19日 10:30—11:30 字号:

报告方式:腾讯会议 ID905 127 519 会议密码:210119
邀请人:许宝刚教授

摘要:A Kruskal-Katona-type problem for a graph G concerned here is to describe each subset of vertices  of G that has minimal neighborhood respect to its size. We establish  a Kruskal-Katona-type theorem for the q-Kneser graph,whose vertex set consists of all k-dimensional subspaces of an n-dimensional linear space over a q-element field, two subspaces are adjacent if they have the trivial intersection. It includes as a
special case the Erdos--Ko--Rado theorem for intersecting families in finite vector spaces and yields a  short proof of the Hilton-Milner theorem for nontrivial intersecting families in finite vector spaces.

【打印此页】 【关闭窗口】