报告地点:行健楼学术活动室665
邀请人:周海燕教授
报告摘要:In this talk, we consider new bounds and constructions of Singleton-optimal LRCs with minimum distance d=6, locality r=3 and minimum distance d=7 and locality r=2, respectively. Firstly, we establish equivalent connections between the existence of these two families of LRCs and the existence of some subsets of lines in the projective space with certain properties. Then, we employ the line-point incidence matrix and Johnson bound for constant weight codes to derive new improved bounds on the code length, which are tighter than known results. Moreover, by using some techniques of finite fields and finite geometry, we give some new constructions of Singleton-optimal LRCs, which have longer length than previous ones.
个人简介:2019年博士毕业于南开大学陈省身数学研究所;2019-2021年于清华大学深圳国际研究生院从事博士后工作;2021年9月起就职于山东大学网络空间安全学院,任研究员。
主要研究方向为代数编码及其在量子纠错码、分布式存储编码等前沿课题中的应用。在TIT、TCOM、DCC、FFA、CCDS以及ISIT、ITW等信息论与编码理论期刊与会议发表十余篇论文。目前主持1项国家自然科学青年基金,1项省自然科学青年基金,作为学术骨干参与2项国家重点研发计划。