网赌

网赌 > 学术报告 > 正文
L-fuzzy ideal degrees in effect algebras
报告人:史福贵教授,北京理工大学 时间:2023年5月28日10:30 字号:

报告地点:行健楼学术活动室665

邀请人:严从华教授

报告摘要:In this paper, considering L being a completely distributive lattice, we first introduce the concept of L-fuzzy ideal degrees in an effect algebra E, in symbol $D_{ei}$. Further, we characterize L-fuzzy ideal degrees by cut sets. Then it is shown that an L-fuzzy subset A in E is an L-fuzzy ideal if and only if $D_{ei}=1$, which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between L-fuzzy ideals and cut sets ($\beta$-nested sets and $\alpha$-nested sets). Finally, we obtain that the L-fuzzy ideal degree is an (L,L)-fuzzy convexity. The morphism between two effect algebras is an (L,L)-fuzzy convexity-preserving mapping. The monomorphism between two effect algebras is an (L,L)-fuzzy convex-to-convex mapping.

报告人简介:史福贵,北京理工大学数学与统计学院学院二级教授,理学与材料学部委员,博士生导师,主要从事模糊集理论,模糊拓扑,模糊拟阵,模糊凸空间等的研究,发表论文200余篇,主持国家自然科学基金四项和教育部博士点基金一项。现任中国系统工程学会模糊数学与模糊系统委员会副理事长,北京运筹学会副理事长,北京数学会副监事长,中国运筹学会理事;《Iranian Journal of Fuzzy Systems》、《Mathematics》等杂志编委。



【打印此页】 【关闭窗口】