报告地点:行健楼学术活动室665
报告人简介:
王六权,2014年本科毕业于浙江大学,2017年博士毕业于新加坡国立大学,现为武汉大学数学与统计学院教授。他主要从事数论与组合数学领域的研究,研究课题集中在q-级数、整数分拆、特殊函数、模形式理论等方面。迄今在《Advances in Mathematics》, 《Transactions of the American Mathematical Society》、《Advances in Applied Mathematics》、《Journal of Number Theory》、《Ramanujan Journal》等期刊上发表和接收学术论文40多篇,先后主持国家自然科学基金青年基金和面上项目各一项,2021年入选国家级青年人才计划。
报告摘要:
We prove Rogers-Ramanujan type identities for the Nahm sums associated with the tadpole Cartan matrix of rank $3$. These identities reveal the modularity of these sums, and thereby we confirm a conjecture of Calinescu, Milas and Penn in this case. We show that these Nahm sums together with some shifted sums can be combined into a vector-valued modular function on the full modular group. We also present some conjectures for a general rank. This talk is based on a joint work with Antun Milas.