报告地点:行健楼学术活动室526
邀请人:黄益副教授
报告摘要:We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every closed totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of “thin” sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.