报告地点:行健楼 526报告厅
邀请人:戴丽霞教授
报告摘要:Let $\mathcal{S}=\{1^2,2^2,3^2,...\}$ be the set of squares and $\mathcal{W}=\{w_n\}_{n=1}^{\infty} \subset \mathbb{N}$ be an additive complement of $\mathcal{S}$ so that $\mathcal{S} + \mathcal{W} \supset \{n \in \mathbb{N}: n \geq N_0\}$ for some $N_0$. Let $\mathcal{R}_{\mathcal{S},\mathcal{W}}(n) = \#\{(s,w):n=s+w, s\in \mathcal{S}, w\in \mathcal{W}\} $. In this talk, we will introduce some progress on the lower bound of $\sum_{n=1}^N R_{\mathcal{S},\mathcal{W}}(n)$ and the behaviour of $w(n)$. This is a joint work with Yuchen Ding, Li-Yuan Wang and Yutong Xia.
报告人简介:孙宇宸,芬兰图尔库大学在读博士,本科和硕士毕业于南京大学。研究领域为解析数论与加法组合。